Cardia Biohybrid™ H-BM

Thermoplastic Starch + PP

Cardia Bioplastics™

Message:

Cardia Biohybrid™ H-BM is based on a blend of thermoplastic starch (TPS) and polyolefin's. This grade of resin is compatibilised to offer a high level of mechanical strength, good impact resistance and toughness. The resin is based on corn starch which is a renewable material.

A biohybrid resin offering a significant reduction in carbon footprint (compared to polyolefins PE/PP)

An effective contribution to sustainability where biodegradability/compostability is not required

Designed for thin and thick gauge rigid moulding and extrusion applications.

Cardia Biohybrid™ H-BM is formulated with 50% of renewable thermoplastic starch polymer. This resin is suitable for a wide range of products manufactured by injection moulding or extrusion processes. Due to its content of polypropylene the material is not a fully biodegradable polymer and it is not intended for ultimate disposal in commercial composting facilities. If biodegradability or compostability is required, use of Cardia Compostable B-M or TBM resin is recommended.

Application Examples

Blow molding of bottles, containers and jars

Blow molding of multi-layer containers and bottles

General Information			
Features	Food Contact Acceptable		
	Good Impact Resistance		
	Good Toughness		
	High Strength		
	Renewable Resource Content		
Uses	Bottles		
	Containers		
Agency Ratings	EU 2002/72/EC		
Processing Method	Blow Molding		
	Extrusion		
	Injection Molding		
Physical	Nominal Value	Unit	Test Method
Density	1.10	g/cm³	ASTM D4883
Melt Mass-Flow Rate (MFR) (190°C/2.16 kg)	2.5	g/10 min	ASTM D1238
Mechanical	Nominal Value	Unit	Test Method
Tensile Strength (Break)	> 15.0	MPa	ASTM D638
Tensile Elongation (Break)	> 16	%	ASTM D638
Thermal	Nominal Value	Unit	Test Method
Peak Melting Temperature	101 to 106	°C	ASTM D3418
Additional Information	Nominal Value	Unit	
Biobased Content - Starch	50	%	

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

