LEXAN™ FL900S resin

Polycarbonate

SABIC Innovative Plastics Europe

Message:

Foamable Lexan* FL900S polycarbonate resin is an ideal choice for structural components where load bearing capability at elevated temperature is a key requirement. It exhibits outstanding inpact strength, high heat resistance, flexural characteristics, creep resistance and processa- bility. In addition, it is an excellent alternative to metal for large components with broad application potential in the appliance, automotive, telecommunications, material, handling and business machine industries. The material contains 5% glass fiber and combines regidity, impact strength and toughness with UL 94 V-0 and 5V listings.

General Information					
UL YellowCard	E45329-236674				
Filler / Reinforcement	Glass Fiber, 5.0% Filler by Weight				
Features	Good Creep Resistance				
	Good Processability				
	Good Toughness				
	High Heat Resistance				
	High Impact Resistance				
	Medium Rigidity				
Uses	Appliances				
	Automotive Applications				
	Business Equipment				
	Structural Parts				
	Telecommunications				
RoHS Compliance	RoHS Compliant				
Processing Method	Injection Molding				
Physical	Nominal Value	Unit	Test Method		
Specific Gravity	0.948	g/cm³	ASTM D792		
Molding Shrinkage - Flow ¹	0.50 to 0.70	%	Internal Method		
Water Absorption					
24 hr	0.15	%	ASTM D570		
Saturation, 23°C	0.35	%	ISO 62		
Mechanical	Nominal Value	Unit	Test Method		
Tensile Modulus	2000	MPa	ISO 527-2/1		
Tensile Stress (Break)	42.0	МРа	ISO 527-2/5		
Tensile Strain (Break)	5.0	%	ISO 527-2/5		
Flexural Modulus ²	2400	MPa	ISO 178		
Flexural Stress	80.0	MPa	ISO 178		
Impact	Nominal Value	Unit	Test Method		

Gardner Impact	50.0	J	Internal Method
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature ³ (1.8 MPa, Unannealed, 64.0 mm Span)	128	°C	ISO 75-2/Af
Ball Pressure Test			IEC 60695-10-2
75°C	Pass		
125°C	Pass		
CLTE - Flow (23 to 80°C)	3.5E-5	cm/cm/°C	ISO 11359-2
Specific Heat	280	J/kg/°C	ASTM C351
Thermal Conductivity	0.15	W/m/K	ISO 8302
RTI Elec	80.0	°C	UL 746
RTI Imp	80.0	°C	UL 746
RTI Str	80.0	°C	UL 746
Electrical	Nominal Value	Unit	Test Method
Dielectric Strength			ASTM D149
0.800 mm, in Oil	35	kV/mm	
1.60 mm, in Oil	27	kV/mm	
3.20 mm, in Oil	17	kV/mm	
Relative Permittivity			IEC 60250
100 Hz	2.41		
1 MHz	2.30		
Dissipation Factor			IEC 60250
100 Hz	2.9E-3		
1 MHz	0.010		
Flammability	Nominal Value	Unit	Test Method
Flame Rating			UL 94
3.00 mm	V-0		
5.00 mm	5VA		
Oxygen Index	35	%	ISO 4589-2
Additional Information	Nominal Value	Unit	Test Method
Filler Content	5.0	%	ASTM D229
Injection	Nominal Value	Unit	
Drying Temperature	120	°C	
Drying Time	2.0 to 4.0	hr	
Suggested Max Moisture	0.020	%	
Hopper Temperature	60.0 to 80.0	°C	
Rear Temperature	265 to 295	°C	
Middle Temperature	280 to 310	°C	
Front Temperature	290 to 320	°C	
Nozzle Temperature	290 to 320	°C	
Processing (Melt) Temp	290 to 320	°C	
Mold Temperature	65.0 to 95.0	°C	

NOTE		
1.	Tensile Bar	
2.	2.0 mm/min	
3.	80*10*4 mm	

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

