OnForce™ LFT PP-30LGF/001 Natural

Polypropylene Homopolymer PolyOne Corporation

Message:

Polyvan's long fiber thermoplastic polymers are used in situations where high hardness and good impact resistance are required, such as metal substitution or other structural applications. These products exhibit enhanced physical and mechanical properties compared to staple fiber products. Its advantages include improved impact strength, elasticity and material strength in different temperature ranges. In addition, compared with traditional high-filled short fiber products, long fiber thermoplastic polymers show improved properties in terms of creep and fatigue resistance, improved dimensional stability and unique surface finish.

General Information			
Filler / Reinforcement	Long glass fiber		
Features	Thermal Stability		
Appearance	Natural color		
Forms	Particle		
Processing Method	Injection molding		
Physical	Nominal Value	Unit	Test Method
Density	1.10	g/cm³	ISO 1183
Molding Shrinkage			
	0.10	%	ASTM D955
1	0.40	%	ISO 294-4
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus			
	6920	MPa	ASTM D638
	7000	MPa	ISO 527-2
Tensile Stress			
Fracture	102	MPa	ASTM D638
Fracture	120	MPa	ISO 527-2
Tensile Strain			
Fracture	2.4	%	ASTM D638
Fracture	2.0	%	ISO 527-2
Flexural Modulus			
	5410	MPa	ASTM D790
	5500	MPa	ISO 178
Flexural Stress			
	145	MPa	ASTM D790
	160	MPa	ISO 178
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength	20	kJ/m²	ISO 179
Charpy Unnotched Impact Strength	60	kJ/m²	ISO 179
Notched Izod Impact	150	J/m	ASTM D256

Dart Drop Impact	10.2	J	ASTM D5420
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature			
1.8 MPa, not annealed	156	°C	ASTM D648
1.8 MPa, not annealed	155	°C	ISO 75-2/A
8.0 MPa, not annealed	135	°C	ISO 75-2/C
Injection	Nominal Value	Unit	
Injection Drying Temperature	Nominal Value 80.0 - 85.0	Unit °C	
Drying Temperature	80.0 - 85.0	°C	
Drying Temperature Drying Time	80.0 - 85.0 4.0 - 6.0	°C hr	

LFT compounds can be processed using equipment similar to that used for short fiber products. The mechanical properties of finished parts depend greatly on the length of the fibers in the molded part; therefore processing conditions must be set carefully in order to minimize fiber breakage. A "low shear process" is advised, with low back pressure, low screw speed and low-to-medium injection speed.

NOTE

1.

Measured on a tensile specimen. Actual mold shrinkage values are highly dependant on part geometry, mold configuration, and processing conditions.

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

