Stratasys ULTEM™ 9085

Polyether Imide

Stratasys

Message:

Production-Grade Thermoplastic for Fortus 3D Production Systems

ULTEM 9085 is a flame retardant high performance thermoplastic for direct digital manufacturing and rapid prototyping. It is ideal for the transportation industry due to its high strength-to-weight ratio and its FST (flame, smoke, and toxicity) rating. This unique material's preexisting certifications make it an excellent choice for the commercial transportation industry - especially aerospace, marine and ground vehicles. Combined with a Fortus® 3D Production System, ULTEM 9085 allows design and manufacturing engineers to produce fully functional parts that are ideal for advanced functional prototypes or end use without the cost or lead time of traditional tooling.

General Information					
Features	Durable				
	Flame Retardant				
	Good Chemical Resistance	Good Chemical Resistance			
	Good Sterilizability				
	Good Strength				
	High Heat Resistance				
	High Impact Resistance				
Uses	Aerospace Applications				
	Automotive Applications				
	Engineering Parts				
	Industrial Applications				
	Marine Applications				
	Prototyping				
	Tooling				
	J				
UL File Number	E345258				
Appearance	Black				
	Tan				
Processing Method	3D Printing, Fused Filament Fabrication (FFF)				
Physical	Nominal Value	Unit	Test Method		
Specific Gravity	1.34	g/cm³	ASTM D792		
Thickness - Layer Capability	254.0 to 330.2	μm			
Volume Resistance ¹	6.0E+13 to 1.0E+14	ohms	ASTM D257		
Flammability - FAA	< 5.00		FAR 25.853		
Heat Release - 65/65, <40HR Peak (1.52 mm)	Passed		FAR 25.853		
NBS Smoke Density			ASTM F814/E662		
flaming	Passed				

non-flaming	Passed		
OSU Total Heat Release			FAR 25.853
2 min test	16.0	kW·min/m²	
5 min test	36.0	kW/m²	
Vertical Burn - 60 second (1.02 to 6.35			
mm)	2.0	sec	FAR 25.853
Fungal Resistance - Method 508.6	Passed		MIL STD-810G
Dutgassing			ASTM E595
Collected Volatile Condensable Material (CVCM)	-0.10	%	
Total Mass Lost (TML)	0.41	%	
Water Vapor Recovered (WVR)	-0.37	%	
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus ² (3.18 mm)	2220	MPa	ASTM D638
Tensile Strength ³ (3.18 mm)	71.7	MPa	ASTM D638
Tensile Elongation ⁴ (Break, 3.18 mm)	6.0	%	ASTM D638
Flexural Modulus ⁵	2500	MPa	ASTM D790
Flexural Strength ⁶	115	MPa	ASTM D790
Compressive Modulus	1930	MPa	ASTM D732
Compressive Strength	105	MPa	ASTM D695
Shear Strength (6.35 mm)	57.2	MPa	ASTM D732
mpact	Nominal Value	Unit	Test Method
Notched Izod Impact (23°C)	110	J/m	ASTM D256A
Jnnotched Izod Impact (23°C)	610	J/m	ASTM D256
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load (1.8 MPa, Unannealed, 3.18 mm)	153	°C	ASTM D648
Glass Transition Temperature	367	°C	DSC
CLTE - Flow	6.6E-5	cm/cm/°C	ASTM E228
Electrical	Nominal Value	Unit	Test Method
Dielectric Strength	4.3 to 11	kV/mm	ASTM D149
Dielectric Constant ⁷	3.00 to 3.20		ASTM D150
Dissipation Factor ⁸	2.6E-3 to 2.7E-3		ASTM D150
Flammability	Nominal Value	Unit	Test Method
Flame Rating	V-0		UL 94

	All Electrical Property values were
	generated from the average of test
	plaques built with default part
	density (solid). Test plaques were
	4.0 x 4.0 x 0.1 inches (102 x 102 x
	2.5 mm) and were built both in the
	flat and vertical orientation. The
	range of values is mostly the result
	of the difference in properties of
1.	test plaques built in the flat vs. vertical orientation.
2.	Type I, 5.1 mm/min
3.	Type I, 5.1 mm/min
4.	Type I, 5.1 mm/min
	Method I (3 point load), 1.3
5.	mm/min
	Method I (3 point load), 1.3
6.	mm/min
	All Electrical Property values were
	generated from the average of test
	plaques built with default part
	density (solid). Test plaques were
	4.0 x 4.0 x 0.1 inches (102 x 102 x
	2.5 mm) and were built both in the
	flat and vertical orientation. The
	range of values is mostly the result
	of the difference in properties of
7	test plaques built in the flat vs.
7.	vertical orientation.
	All Electrical Property values were
	generated from the average of test
	plaques built with default part
	density (solid). Test plaques were $4.0 \times 4.0 \times 0.1$ inches (102 x 102 x
	2.5 mm) and were built both in the
	flat and vertical orientation. The
	range of values is mostly the result
	of the difference in properties of
	test plaques built in the flat vs.
8.	vertical orientation.
- -	

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

