Teflon® FEP CJ 99

Perfluoroethylene Propylene Copolymer

DuPont Fluoropolymers

Message:

For inventory control purposes product name may be followed by an X.

Products labeled FEP CJ 99 and FEP CJ 99 X are equivalent and all information in this document is applicable to both.

Typical Application

Wire and cable insulation, small tubing and injection molded parts.

DuPont Teflon ® FEP CJ 99 is a melt-processible copolymer of tetrafluoroethylene and hexafluoropropylene without additives that meets the requirements of ASTM D 2116 type I.

Thanks to the unique combination of a Melt Flow Rate in the range of 9 g/10 min and MIT flexlife above 40 000 cycles, this resin offers both attractive processing speeds and high stress-rack resistance in addition to the excellent characteristics typical of Teflon ® fluoropolymer resins, such as non-ageing characteristics, chemical inertness, exceptional electrical properties, low flammability, heat resistance, toughness and flexibility, low coefficient of friction, non-stick characteristics, negligible moisture absorption and excellent weather resistance. The increased transparency of Teflon ® FEP CJ 99 will also allow better colourability.

Stress crack resistance is an important element in establishing end-use performance. Extensive testing of wire and cable constructions is required for definitive performance evaluation. Well-known and most comprehensive tests for stress rack resistance of wire and cable are mandrel wrap tests as described in the military specification MIL-W-22759 (aerospace) and ISO 6722/LV112 (automotive). Experience has shown that the MIT folding endurance or flex life test, based on ASTM D 2176, performed on a thin film of resin, gives a good correlation with stress crack resistance. Resins with a higher MIT flex life, perform better in the stress-crack resistance tests. Teflon ® FEP CJ 99 has a higher degree of stress crack resistance than most FEP resins with similar viscosity (MFR) and offers higher productivity than FEP resins with similar stress crack resistance (MIT). We recommend that for applications involving repeated thermal and flex cycling, specific tests on the final cable always should be undertaken. The MIT test results should be viewed as guide to comparative performance of the various grades of resin.

General Information	
Features	Fast Molding Cycle
	Food Contact Acceptable
	Good Chemical Resistance
	Good Colorability
	Good Electrical Properties
	Good Flexibility
	Good Toughness
	Good Weather Resistance
	High ESCR (Stress Crack Resist.)
	High Heat Resistance
	Low Friction
	Low Moisture Absorption
Uses	Insulation
	Wire & Cable Applications
Agency Ratings	ASTM D 2116 type 1
	EU 10/2011
	FDA 21 CFR 177.1550
Forms	Pellets

Processing Method Blow Molding

Compression Molding

Extrusion

Injection Molding

Physical	Nominal Value	Unit	Test Method
Specific Gravity	2.13	g/cm³	ASTM D792, ISO 1183
Melt Mass-Flow Rate (MFR) (372°C/5.0 kg)	9.0	g/10 min	ASTM D2116, ISO 12086
Water Absorption (24 hr)	< 0.010	%	ASTM D570
Hardness	Nominal Value	Unit	Test Method
Durometer Hardness (Shore D)	56		ASTM D2240, ISO 868
Mechanical	Nominal Value	Unit	Test Method
Tensile Strength (Yield, 23°C)	28.0	MPa	ASTM D638, ISO 12086
Tensile Elongation (Break, 23°C)	300	%	ASTM D638, ISO 12086
Impact	Nominal Value	Unit	Test Method
Notched Izod Impact (23°C)	No Break		ASTM D256, ISO 180
Thermal	Nominal Value	Unit	
Continuous Use Temperature ¹	205	°C	
Melting Temperature ²	255	°C	
Electrical	Nominal Value	Unit	Test Method
Dielectric Strength			
0.250 mm ³	> 100	kV/mm	ASTM D149
0.250 mm	> 100	kV/mm	IEC 60243-1
Dielectric Constant			ASTM D150, IEC 60250
1 kHz	2.03		
1.00 GHz	2.03		
Dissipation Factor			ASTM D150, IEC 60250
1 kHz	5.0E-5		
1.00 GHz	8.0E-4		
Flammability	Nominal Value	Unit	Test Method
Flame Rating ⁴	V-0		UL 94
Oxygen Index	> 95	%	ASTM D2863, ISO 4589-2
Additional Information	Nominal Value	Unit	Test Method
Critical Shear Rate (372°C)	29.0	sec^-1	Internal Method
Guide DDR Range - for cable extrusion	60.0 to 120		
MIT Folding Endurance - film (200.0 μm)	4.0E+4	Cycles	ASTM D2176
NOTE			

	The continuous service
	temperature is based on
	accelerated heat-aging tests, and
	represents the temperature at
	which tensile strength and ultimate
	elongation retains 50% of the
	original values, after 20 000 h
	thermal aging When considering
	the use of Teflon ® FEP at elevated
	temperatures especially in
	combination with mechanical,
	electrical or chemical exposure,
	preliminary testing should be done
1.	to verify suitability.
2.	ASTM D4591 / D3418
3.	Method A (Short-Time)
	- These results are based on
	laboratory tests, under controlled
	conditions, and do not reflect
	performance under actual fire
	conditions Current rating is a
4.	typical theoretical value
	··

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519 Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

