KetaSpire® KT-851 NL

Polyetheretherketone

Solvay Specialty Polymers

Message:

Flow

Hardness

Transverse flow

Water Absorption (24 hr)

KetaSpire® KT-851 NL resin is a depth-filtered grade of polyetheretherketone (PEEK) supplied in non-lubricated, natural-color pellet form and is specially designed for use in extruded wire insulation coating. KT-851 NL offers the needed balance of properties and processability for applying thin insulation coatings onto copper or other conducting wire using a continuous extrusion process to achieve a robust insulation coating that is capable of withstanding the harsh use environments of many industrial applications.

KetaSpire® PEEK is produced to the highest industry standards and is characterized by a distinct combination of properties, which include excellent chemical resistance to organics, acids and bases, best in class fatigue resistance, excellent wear resistance, ease of melt processing and high purity. A lubricated form of this resin is available as KT-851 in natural color (NT). The pellets in the lubricated versions are supplied with a very light dusting (0.01%) of calcium stearate to aid with conveying through single screw extruder-based processing equipment.

General Information			
Additive	Lubricant		
Features	Good dimensional stability		
	Impact resistance, good		
	Good chemical resistance		
	Fatigue resistance		
	Heat resistance, high		
	ductility		
	Flame retardancy		
Uses	Electrical/Electronic Applications		
	Wire sheath		
	Oil/Gas Supplies		
RoHS Compliance	Contact manufacturer		
Appearance	Natural color		
Forms	Particle		
Processing Method	Machining		
	Profile extrusion molding		
	Injection molding		
Physical	Nominal Value	Unit	Test Method
Specific Gravity	1.30	g/cm³	ASTM D792
Melt Mass-Flow Rate (MFR) (400°C/2.16			
kg)	10 g/10 min ASTM D1238		
Molding Shrinkage			ASTM D955

%

%

%

Unit

ASTM D955

ASTM D955

ASTM D570

Test Method

1.1 - 1.3

1.3 - 1.5

Nominal Value

0.10

Rockwell Hardness (M-Scale)	97		ASTM D785
Durometer Hardness (Shore D, 1 sec)	88		ASTM D2240
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus			
1	3600	MPa	ASTM D638
	3850	MPa	ISO 527-2/1A/1
Tensile Stress			
Yield	95.0	MPa	ISO 527-2/1A/50
	96.0	MPa	ASTM D638
Tensile Elongation			
Yield ²	5.2	%	ASTM D638
Yield	4.8	%	ISO 527-2/1A/50
Fracture ³	20 - 30	%	ASTM D638
Fracture	20 - 30	%	ISO 527-2/1A/50
Flexural Modulus			
	3900	MPa	ASTM D790
	3620	MPa	ISO 178
Flexural Strength			
	152	MPa	ASTM D790
	112	MPa	ISO 178
Compressive Strength	121	MPa	ASTM D695
Shear Strength	91.5	MPa	ASTM D732
Impact	Nominal Value	Unit	Test Method
Notched Izod Impact			
	69	J/m	ASTM D256
	7.5	kJ/m²	ISO 180
Unnotched Izod Impact	No Break		ASTM D4812, ISO 180
Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load ⁴ (1.8			
MPa, Annealed, 3.20 mm)	157	°C	ASTM D648
Glass Transition Temperature	150	°C	ASTM D3418
Peak Melting Temperature	340	°C	ASTM D3418
CLTE - Flow (-50 to 50°C)	4.3E-5	cm/cm/°C	ASTM E831
Specific Heat			DSC
50°C	1350	J/kg/°C	DSC
200°C	1950	J/kg/°C	DSC
Thermal Conductivity	0.24	W/m/K	ASTM E831
Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	> 1.9E+17	ohms	ASTM D257
Volume Resistivity	2.5E+17	ohms·cm	ASTM D257
Dielectric Strength (0.0500mm, amorphous film)	200	kV/mm	ASTM D149
Fill Analysis	Nominal Value	Unit	Test Method

Melt Viscosity (400°C, 1000 sec^-1)	380	Pa·s	ASTM D3835
Additional Information			

Standard Packaging and Labeling

KetaSpire resins are packaged in polyethylene buckets or cardboard boxes depending upon the order size. Individual packages will be plainly marked with the product, color, lot number, and net weight.

Injection	Nominal Value	Unit	
Drying Temperature	150	°C	
Drying Time	4.0	hr	
Rear Temperature	355	°C	
Middle Temperature	365	°C	
Front Temperature	370	°C	
Nozzle Temperature	375	°C	
Mold Temperature	175 - 205	°C	
Injection Rate	Fast		
Screw Compression Ratio	2.5:1.0 - 3.5:1.0		
Injection instructions			

Drying

KetaSpire resins must be dried completely prior to melt processing. Incomplete drying will result in defects in the formed part ranging from surface streaks to severe bubbling. Pellets can be dried on trays in a circulating air oven or in desiccating hopper dryer. Drying conditions recommended are 4 hours at 150°C (300°F).

Injection Molding

KetaSpire resins can be readily injection molded in most screw injection machines. A general purpose screw with a compression ratio in the range of 2.5 - 3.5 : 1 is recommended, as is minimum back pressure. Injection speeds should be as fast as possible, consistent with part appearance requirements. Mold temperatures in the range of 175°C to 205°C (350°F to 400°F) are suggested. Recommended starting point barrel temperatures are shown in the following table.

NOTE	
1.	1.0 mm/min
2.	50 mm/min
3.	50 mm/min
4.	200°C,2 hours

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533 Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

