Purell PE GF 4760

High Density Polyethylene

LyondellBasell Industries

Message:

Purell PE GF 4760 is a high density polyethylene with good ESCR, high rigidity and good organoleptic properties. It contains antioxidants and is delivered in pellet form. Target applications are small blow mouldings for foodstuff, consumer goods as well as pharmaceutical packaging. This grade is also well established for injection blow moulding applications.

Without exception, all potential activities for applications in the pharmaceutical, medical device, laboratory and diagnostics area have to be discussed with the relevant Technical (P & AD) and Business contacts first.

To discuss a medical/pharmaceutical application please contact: your local Distributor or your local Basell contact.

General Information				
Additive	Antioxidant			
Features	Antioxidant			
	Ethylene Oxide Sterilizable			
	Good Flow			
	Good Organoleptic Properties			
	High ESCR (Stress Crack Resist.)			
	High Rigidity			
Uses	Blow Molding Applications			
	Bottles			
	Consumer Applications			
	Medical/Healthcare Applications			
	Packaging			
	Pharmaceutical Packaging			
	Pharmaceuticals			
	Vials			
Forms	Pellets			
Processing Method	Extrusion Blow Molding			
	Injection Blow Molding			
	Injection Molding			
Physical	Nominal Value	Unit	Test Method	
Density	0.956	g/cm³	ISO 1183	
Apparent Density	> 0.50	g/cm³	ISO 60	
Melt Mass-Flow Rate (MFR)			ISO 1133	
190°C/2.16 kg	0.40	g/10 min		
190°C/21.6 kg	30	g/10 min		
190°C/5.0 kg	1.5	g/10 min		
Basell Bottle Test	1.3	day	Internal Method	

FNCT			ISO 16770
80°C ¹	5.0	hr	
80°C ²	15.0	hr	
Staudinger Index - Jg	280	cm³/g	ISO 1628
Hardness	Nominal Value	Unit	Test Method
Shore Hardness (Shore D)	62		ISO 868
Ball Indentation Hardness (H 132/30)	51.0	MPa	ISO 2039-1
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus	1250	MPa	ISO 527-2
Tensile Stress (Yield)	27.0	MPa	ISO 527-2
Tensile Strain (Yield)	10	%	ISO 527-2
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength (-30°C)	8.0	kJ/m²	ISO 179/1A
Tensile Impact Strength	90.0	kJ/m²	ISO 8256
Thermal	Nominal Value	Unit	Test Method
Vicat Softening Temperature	77.0	°C	ISO 306/B50
Extrusion	Nominal Value	Unit	
Melt Temperature	180 to 220	°C	
NOTE			
1.	3.5 MPa, 2% Arcopal		
2.	2.5 MPa, 2% Arcopal		

The information and data on this page are provided by manufacturers and document providers. SHANGHAI SUSHENG assumes no legal liability. It is strongly recommended to verify all technical data with material suppliers before final material selection. All rights belong to the original authors. If any infringement occurs, please contact us immediately.

Recommended distributors for this material

Susheng Import & Export Trading Co.,Ltd.

Tel: +86 21 5895 8519

Phone: +86 13424755533

Email: sales@su-jiao.com

No. 215, Lianhe North Road, Fengxian District, Shanghai, China

